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Abstract. We design a three-pillar five-level maturity model for data trust with respect to the European regu-
lation on data management. Pillar one focuses local data management. Local data management regards the cor-
rectness of logs, usage policies of data, and local access to data. The second pillar of interest is how data is shared.
Specifically, it handles the assessment for the data recipient. Lastly, we define an area for GDPR-compliance.
GDPR mostly defines right of data subjects with respect to their personal data. These induce processes for en-
tities handling personal data with regards to providing the personal information to a subject and how to rectify
or delete data collected. The five levels locate the responsibility to ensure the regulation with the individual, the
organization, technical infrastructure, and formal methods. We also provide resources from the literature for Level
3 (Technical Methods) and Level 4 (Formal Methods).

1 Project Overview

The European Union has attempted multiple times in the past to structure data economies. Two of the latest attempts
are the Data Governance Act (DGA) [20] and General Data Protection Regulation (GDPR) [19] regulating services
handling foreign data3. The former handling the sharing of (non-personal) data, while the latter discusses the rules for
handling personal data and what rights data subjects hold. Based on these regulations, we define a maturity model
with three key-areas of concern - local data management, data sharing, and GDPR-compliance.

Local data management focuses on the core components the regulation requires. We focus on three components here:

– Logging of any operation: Any operation like reading, writing, archiving or processing have to specifically logged
permanently.

– Usage Policies: Foreign data has policies attached to it to describe what operations can be performed on them.
Checking usage policy conformance assures that no unintended processing is executed.

– Local Access to Data: The system also have to note who or what systems have potential access to the data in
question.

The maturity of these components can range from ad hoc processes to fully automatic and verified implementations.

Data sharing with additional parties is only permitted under specific conditions. On the one hand, the data subject
has to have given permission to share its data. Additionally, the recipient has to follow DGA and GDPR themselves
and be located in the European Union or an acceptable third country.

Lastly, GDPR-compliance sets specific requirements on the handling of personal data. GDPR protects a data subject’s
rights regarding their personal data and what they can enforce even after someone else gets access to them. Specifically,
they have the right to view what data has been collected, rectify information, or request the deletion of information.
All these operations require the implementation of processes to handle the interaction between the data handling
service and data subjects.

Outline. Section 2 introduces what this documents considers a data trust and describes its structure with terms used
in the Data Governance Act and the General Data Protection Regulation. Based on the data trust model from Section
2, Section 3 develops the maturity model. It also provides concrete questions with which to assess a systems current
maturity and how to further mature the system with additional techniques and pointers to the literature. To illustrate
3 We define foreign data as data either regarding a different entity or collected by a different entity.
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how formal methods can ensure specific properties induced by the regulation, Section 4 shows three examples. Firstly,
we show how linear types can prove that a specific method was called on every execution path. Secondly, we use TLA+

to specify a simple communication protocol and show that its communication is well-formed, ie., that no unexpected
messages arrive at either participant. Lastly, we explain how digital signatures can ensure the origin of a message.
Section 5 summarizes the work.

2 What is a Data Trust?

Data trusts lack an standard definition in the literature. Every definition scopes the responsibilities of the data trust
differently. Furthermore, regulation introduces the term “data intermediation service” with an additional definition
that imposes regulation to data trusts [20]. Here are a selection of definitions from the literature:

– “In a legal setting, trusts are entities in which some people (trustees) look after an asset on behalf of other
people (beneficiaries) who own it. In a data trust, trustees would look after the data or data rights of groups of
individuals” [2]

– “Data trust is a fairly new concept that aims to facilitate data sharing by forcing data users to be transparent
about the process of sharing and reusing data. Data trust entails legal, ethical, governance and organizational
structure as well as technical requirements for enabling data sharing” [40]

– “A data trust must perform various tasks: It must be able to assign access rights to data, it may or may not need
to hold data itself, it must be able to audit whether organizations adhere to their agreed conditions and it must
have access to credible tools of enforcement” [9]

All these definitions have “data sharing” in common and define and ensure an access policy. The underlying data is
neither about nor owned by the data trust but a beneficiary of the trust. We now define key terms using the same
vocabulary and spirit as the Data Governance Act and accompanying regulation.

Definition 1 (Data). Data is a fact, an observation, or information in a digital format.

Definition 2 (Data Subject). A data subject or the subject of data is the person, object, event, or data that is
described by a piece of data.

Definition 3 (Data Holder). A data holder is the natural or legal person controlling and managing the data.

Definition 4 (Data User). The data user is the natural or legal person that has lawful access to the data.

Definition 5 (Data Manager). A data manager is a natural or legal person that upon request of the data holder
manages the access from data users to the data holder’s data.

Definition 6 (Data Manager Client). A data manager client is a natural or legal person that upon request of the
data user requests the access from data trust to the data holder’s data.

We present the relationships between these terms visually in Figure 1. A is a data holder that holds data a. Manager
MA manages access to a for A. Data user B attempts to access a with a data manager client MB .

As stated above, the literature agrees that data trusts are vehicles for sharing and ensuring access policies. Depending
on who we require to ensure the access policies are met, the meaning of the term “data trust” in Figure 1 changes.
There are three possible groups of entities that can be settled with that responsibility: the data manager, the data
user and its client, and the data manager and client network. We now discuss consequences for these situations.

The data manager operates as a data trust. In the first case, the data manager takes on the additional responsibility
of the data trust, represented through the solid box in Figure 1. That is, it shares data and ensures that usage policies
are met. The usage has to be provided by the data manager client MB and the data manager has to trust the provided
information. In this scenario, the data trust bases its decisions completely on the information provided from the
outside. A certification for a data trust considers these decision procedures for this definition of a data trust. This is
the first intuitive thought when considering a data trust, an entity managing and ensuring usage of a costumers data.
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Fig. 1. A is the data holder holding data a that is under management at MA. Data user B is requesting a via the users
infrastructure for communicating with data manager MB .

The data user and its client operate as a data trust. The second case moves the requirements to the other side of the
interaction. The dashed box in Figure 1 shows this scenario. For the certification as a data trust, the data user would
get audited to ensure that the usage reported by client MB accurately represents the actual usage of B. A drawback
of this definition is that certification in this scenario requires auditing of non-public intellectual property in data user
B and required domain knowledge. A restriction to only the client MB is also possible but would only certify that
information passed through the client is not altered and executes sharing operations correctly. The ISST4 follows this
definition.

Data manager and client cooperatively operate as a data trust. The last case constitutes of parts of both sides of the
interaction. In this case the data manager and its client create a certified network for trusted data exchange. As in the
first case, the manager is validated to take the right decisions and execute all required steps. Additionally, the client is
certified as in the second scenario. Lastly, the communication is also part of the data trust and protocols are inspected
for correct behavior. On the other hand, the data user B is not audited for the data trust specification. That is, it is
feasible for a malicious data user to report wrong information to its client that leads to misbehavior.

None of the three definitions for data trust provides the full spectrum of guarantees. In the first case, we only know
that MA decides to share data correctly when provided correct information. The second scenario provide guarantees
that the usage is correct but would require deep knowledge of the operation of data users. For the last case, we can
guarantee that the interaction between manager and client is correct but still need correct information from the data
user.

From our perspective, the core of the data trust is best encapsulated in the third scenario. It requires additional
certification for the data user to derive actual usage policy information. But this certification does not describe the
core functionality of the data trust, ie., sharing data under usage agreements. Therefore, we define data trusts as a
cooperative network between data managers and their clients.

Definition 7 (Data Trust). A data trust is the cooperative network between and including data managers and their
clients.

The maturity model developed in this work is based on this definition. Adaptation to all definitions is possible as the
requirements are not tied to any specific structure.

3 Maturity Model

We now present a maturity model for the conformance of a data trust with the DGA [20] and GDPR [19]. We use the
definitions stated above. A maturity model consists of three different components. Firstly, we describe the different
capabilities necessary for a data trust. Secondly, we define the maturity curve, ie., the different levels of maturity
different capabilities can exhibit. Lastly, we provide a way to assess a given system. To that end, we formulated
questions for each level and capability.

We define seven capabilities over three core pillars. These are organized to be the three core responsibilities of data trust,
ie., local data management, data sharing, and how to handle personal data. Local data management consists of three
4 https://www.isst.fraunhofer.de

https://www.isst.fraunhofer.de
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main areas as discussed above. Data sharing requires the data trust to manage sharing permissions, communication
with other parties, and to ensure recipient compliance with DGA [20] and GDPR [19]. Handling personal data imposes
the provision of an interface for data subjects to view, correct, and delete their data, ie., a data trust has to handle
communication with data subjects. These capabilities are categorized and described in Table 1.

Pillar Capability Description

Local Data Management
Logging According to the DGA [20] and GDPR [19] operations on and with data have to

persistently logged. Logging should include the time, the place, the operation, and a
reference to the data the operation used.

Usage Policies Usage Policies describe how data may be used. An operation executes on data, the
system must ensure that the specific operation is allowed to execute on it.

Local Access One specific usage of data is read access. Before any data is read from the storage
medium, it should be checked that the data may be read in the current circumstance.

Data Sharing
Permission
Management

Sharing data is dependent on whether the data subject has given permission for the
data to be shared. This permission has to be validated before sharing can be allowed.

Communica-
tion Safety

Communication safety ensures that the communication is secure, eg., encrypted and
authenticated, and that all participants only enter well defined states.

Recipient
Compliance

DGA [20] and GDPR [19] require that all recipients of shared data also follow the
same regulation. Sharing requires that the sharer validates the recipients compliance
with the regulation.

Personal Data Data Subject
Communica-
tion

The regulation allows data subjects to view, correct or delete their data. This requires
direct communication with the data holder and processes to react to requests.

Table 1. Data Trust capabilities to meet regulatory requirements of the GDPR [19] and DGA [20].

Our maturity model has five levels. At Level 0 no guidelines and processes are defined. We leave it out of any further
discussion because at that level, the regulatory requirements are clearly not met. Level 1 describes minimal requirements
to start considering a system as data trust. It puts the requirements on the individual implementer of the system.
Level 2 adds organizational oversight to the approach with review systems and intra-organizational accountability. We
add technical assurance at Level 3. Here defined technical primitives ensure that requirements are met. Lastly, Level
4 adds formal assurance in the form of formal methods to Level 3’s technical assurance. Formal methods are capable
to prove that the specific requirements are fulfilled. Table 2 shows a general description of the different levels of the
maturity curve. It also includes general steps to achieve the next level in the model. We provide more details on each
specific capability in Table 3.

Assessing a system’s maturity requires to ask whether specific capabilities are correctly implemented. Table 4 provides
questions for each capability and level to quickly and correctly assess the system. The questions are incomplete and
may require further investigation to correctly judge the maturity.

Pillar Capability Level 1 Level 2 Level 3 Level 4

Local Data Management
Logging Do coding guide-

lines describe how
logging has to be
integrated into the
implementation?

Do reviews specif-
ically require to
check logging op-
erations and their
compliance to
coding guidelines?

Does the platform
implement logging
in primitive oper-
ations? Does the
platform restrict
operations such
that only logged
primitives can be
used? Does the
platform monitor
the execution of all
components?

Can we provide all
operation traces?
Does each include
the correct logging
operations?
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Pillar Capability Level 1 Level 2 Level 3 Level 4
Usage Poli-
cies

Do coding guide-
lines describe how
policy checks have
to be integrated
into the implemen-
tation?

Do reviews specif-
ically require to
check policy checks
and their com-
pliance to coding
guidelines?

Does the platform
implement policy
checks in primitive
operations? Does
the platform re-
strict operations
such that only
checked primitives
can be used? Does
the platform moni-
tor the execution of
all components?

Can we provide all
operation traces?
Does each include
the correct policy
checks each for
each operation?

Local Access Do coding guide-
lines describe how
access checks have
to be integrated
into the implemen-
tation?

Do reviews specif-
ically require to
check access rights
for operations and
their compliance to
coding guidelines?

Does the platform
implement access
checks in primitive
operations? Does
the platform re-
strict operations
such that only
checked primitives
can be used? Does
the platform moni-
tor the execution of
all components?

Can we provide all
operation traces?
Does each include
the correct access
rights checks for
each operation?

Data Sharing
Permission
Management

Do coding guide-
lines describe how
sharing permission
checks have to be
integrated into the
implementation?

Do reviews specif-
ically require to
check sharing
permissions for
operations and
their compliance to
coding guidelines?

Does the platform
implement sharing
permission checks
in primitive oper-
ations? Does the
platform restrict
operations such
that only checked
primitives can be
used? Does the
platform monitor
the execution of all
components?

Can we provide all
operation traces?
Does each include
the correct sharing
permission checks
for each operation?

Commu-
nication
Safety

Is the communi-
cation protocol
only defined in the
implementation? Is
the implementation
required to develop
a tool that can
communicate with
it?

Is there a informal
document describ-
ing the communica-
tion between par-
ticipant?

Is there a formal
model for the com-
munication? Is the
document detailed
enough to create
a corresponding im-
plementation?

Is there a me-
chanical method
to check that the
formal model and
the implementation
behave in the same
way?

Recipient
Compliance

Not Applicable Does the recipient
ensure that they
behave according to
regulation?

Has the infrastruc-
ture been reviewed
by external and
reputable sources?

Has the external re-
viewer been certi-
fied by government
body? Can it is-
sue official certifica-
tion?
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Pillar Capability Level 1 Level 2 Level 3 Level 4
Personal Data Data Subject

Communica-
tion

Is communication
organized by a
single contact form
with free text
entry?

Is there a document
describing how to
communicate with
data subjects?

Does the plat-
form organize
communication
with tools and
different communi-
cation channels for
different issues?

Does the organi-
zation review past
communication
to improve the
communication
process?

Table 4: Questions to assess the current maturity level for an im-
plementation.

Level 4 requires the use of formal methods to generate proofs for regulatory requirements or increase the design of
the platform. The latter is especially important with regards to the data subject communication. Table 5 collects
literature as starting points to integrate formal methods in the design and implementation of a data trust platform.
It also includes introductory literature for creating tests as first tool to increase assurance informally. The literature
for Levels 1 and 2 mostly considers development processes and how to manage them [6,21,43]. Additionally, resources
on coding guidelines and code review can provide a starting point to create the necessary resources for a specific
organization [3, 22].

In Section 4, we show three examples to explain how formal methods can ensure properties of systems. Firstly, we
are going to show how linear types can ensure that a function, eg., the log function, is called before an operation is
executed. Secondly, we show the specification of a simple communicating system in TLA+ and how it ensures that no
unsafe state is reached. Lastly, we describe how a digital signature can ensure that a recipient is externally reviewed
by a trusted entity.

4 Examples

This section shows three examples of how formal methods can create certainty for specific aspects of an implemen-
tation. Linear types have the ability ensure dependencies between calculations by restricting the use of values in
programs. TLA+ specify communication protocols formally. This enables automated tools explore the state space and
find undesired behavior. Lastly, cryptography enables any recipient to verify the origin of a message.

4.1 Linear Types

Linear types as described by Wadler [45] impose restrictions on the use values in a programming language. Each value
must be used exactly once. This has to the ability to firstly improve static memory management and, more importantly
here, can create a dependency management system in the language.

For example, the function operation(_prf:LogPrf) requires a LogPrf value. And because the only way to create such
a value is to call the log function, we are ensured that the log function is called. The linear types ensure that the
LogPrf value is used only once. Hence, if we try to call operation again with the same LogPrf value (and having logged
only one operation), the compiler will throw an error. Additionally, if we create a LogPrf value and never consume it
with an corresponding operation, ie., log an operation that is never executed, the compiler will also throw an error.
Therefore, linear types ensure and prove during compile time that every operation has a corresponding call to the log
function.

An example with the complete code are demonstrated in Figure 4.1. The description above is true for linear types,
but Rust5, the example’s implementation language, does not implement linear types. Rust implements affine types.
Affine types guarantee that every value is used at most once. That is, affine types ensure that any operation has a
log operation, because otherwise a LogPrf value would have been used twice, but they cannot ensure that any log
operation also has a corresponding operation executed to it. Secondly, we require that the only way to construct a
LogPrf value is through the log function. This requires to hide the constructor with the package infrastructure but
this is a standard operation in all mainstream programming languages.
5 https://www.rust-lang.org

https://www.rust-lang.org
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Level Description Next Steps
Level 0: Unstructured Pro-
cesses

Level 0 does not provide any guidelines or pro-
cesses to implement the regulation. A system with
maturity Level 0 does not meet regulatory require-
ments.

The definition of informal guidelines is the first
step mature such a system.

Level 1: Minimal require-
ments

Level 1 describes the minimal requirements for
each capability. The regulatory requirements are
meet by self-organized discipline on an individual
level. Notice that for the “Recipient Compliance”
capability, this level is not applicable. Instead the
other organization has to as an organization as-
sess their own capabilities at Level 2.

The next step for the organization is to introduce
an inner organizational - multiple eyes principle.
This involves creating documentation and review
of key components of the system.

Level 2: Organizational As-
surance

Level 2 introduces internal validation to the prod-
ucts and processes the organization develops.
Code reviews require that at least to developers
validate a piece of code. Documentation can be
read and validated by others internal to an or-
ganization. Self assessment to a second party in-
troduces internal pressure to correctly state the
organizations capabilities. (Sure :D)

Introducing technical means to ensure specific as-
pects is the next step. The platform can intro-
duce primitives that ensure that specific aspect
are used. Thereby limiting the validation require-
ments to only those primitives. Formal methods
my be checked mechanically for syntactic correct-
ness and provide a uniform platform for communi-
cation between engineers. External reviews codify
the checks a platform has to undergo to partici-
pate in a data sharing network.

Level 3: Technical Assurance Level 3 adds technical assurance to the product
and processes. Adding primitives that fulfill reg-
ulatory requirements ensures that these require-
ments are met. Implementing the communication
processes according to a formalized specification
removes a level of uncertainty. Additionally, us-
ing the platform to guide the communication with
data subjects ensures that all necessary compo-
nents are present.

Adding formal methods for verification to the
technical assurance removes another source of hu-
man error by verifying the implementation. For-
mal methods can create program traces to ensure
the calling of necessary operators. Additionally,
formal methods can analyze communication pro-
tocols.

Level 4: Formal Assurance Level 4’s formal method can verify the technical
assurance added in Level 3. Analyzing specifica-
tion and implementation of components can en-
sure that implementations meet the specification.
Furthermore, specifications can be analyzed to en-
sure that it behaves as intended and does not ex-
hibit unintended behavior.

Additional formal methods can always be applied
to more completely describe the behavior of the
system.

Table 2. Data Trust Maturity Curve describes the four levels of maturity. It also includes the conceptual steps to increase the
maturity. The concrete state for each capability in each maturity level may be found in Table 3.

4.2 Communication Specification

Communication with other systems work along a agreed-upon protocol between all parties. These might not be formally
defined and only defined through its implementation but a protocol is always present when communicating. Multiple
formalism have been defined to describe the communication between systems. The Calculus of Communicating Systems
(CCS) [33] and Communicating Sequential Processes (CSP) [25] where first approaches to describe these systems with
a fixed number of components. These were later extend to allow the creation of new communication links between
components with the π-calculus [41]. Another approach defines the communication between two (or more) parties as a
single system and models it appropriately. This has the advantage that we are able to use an of the shelf specification
framework like TLA+.

TLA+ is an industry strength tool to describe and check systems of varying complexity. It describes models in the
Temporal Logic of Actions, ie., specifications are logical formulae. An action is a formula that describes the current
state of variable with formulae like x = exp and the next state of a variable with x′ = exp. (Notice the tick after the
x.)

In our concrete example, the full specification is in Appendix A, we define the communication between a data trust
and a client. The client sends a request, the data trust responds and the client sends an acknowledgment. (For this
example, we abstract away from the concrete value of the request data and use a fixed placeholder.) Both, the client



8 R. Stewing and F. Howar

Pillar Capability Level 1 Level 2 Level 3 Level 4

Local Data Management
Logging Coding guidelines re-

quire logging of oper-
ations.

Code reviews specif-
ically review logging
operations.

The platform in-
frastructure globally
implements logging
primitives within
core functionality.

Formal methods en-
sure the execution of
logging operations.

Usage Policies Coding guidelines re-
quire policy checks
before data usage.

Code reviews specif-
ically review policy
checks.

The platform in-
frastructure globally
implements policy
checks.

Formal methods en-
sure policy checks be-
fore data access.

Local Access Coding guidelines re-
quire access rights.

Code reviews specif-
ically review access
rights.

The platform glob-
ally implements ac-
cess rights.

Formal methods en-
sure access rights.

Data Sharing
Permission
Management

Coding guidelines re-
quire to check for
sharing permission.

Code reviews specif-
ically review sharing
permission checks.

The platform glob-
ally implements
sharing permission
checks.

Formal methods en-
sure sharing rights.

Communica-
tion Safety

Communication is
defined by the imple-
mentation.

Communication is in-
formally described.

Communication is
formalized and infor-
mally reviewed.

Communication
is formally spec-
ified and formal
methods ensure com-
munication safety.
The implementa-
tion is checked to
correspond to the
specification.

Recipient
Compliance

Not Applicable Recipient self as-
sesses compliance.

External review as-
sesses compliance.

External review
assesses compliance
and issues an official
certificate.

Personal Data Data Subject
Communica-
tion

Communication with
data subjects is ad
hoc and not defined.

Communication with
data subjects is de-
fined but carried out
manually.

Communication with
data subjects is de-
fined and supported
by platform infras-
tructure.

Communication with
data subjects is
defined, supported,
reviewed, and im-
proved continuously.

Table 3. Maturity levels for Data Trust Capabilities.

and the data trust, have an inbox that can hold exactly one message (1 or 2) or is empty (0). Additionally, the data
trust and client are in different states depending on which next operation they are going to take or expecting from
the other. We will now take a closer look at the action ReadRequestFromDT.

ReadRequestFromDT , DTState = 0

∧ ReadFromDT(1)

∧ DTState′ = 1

∧ UNCHANGED〈inboxClient, clientState

The action is only enabled, ie., can be executed, if the data trust is in the 0 state and we can read a 1 from the data
trust inbox. In that case, the data trust transitions to the 1 state and the client’s inbox and its state remain untouched.
Intuitively, we model that the data trust reads from its inbox and reacts with a state transition. By combining multiple
of these actions, we can describe sequences of transitions and in combinations whole behaviors of systems.

Given such an behavior, the TLA+ tool box is able to search the whole state space and prove that specific behaviors
never exists. For example, in the present specification, we can show that the data trust inbox never contains an
unknown message, ie., the data trust is never blocked. Similarly, we can show that all responses from the data trust
to the client’s inbox do not block the client. More complex properties can also be encoded.

Formalizing the communication with tools like TLA+ provides a clear definition which can be referenced by implementers
to check that their systems behave correctly (or at least up to specification). It also guarantees that the system behaves
in known ways as long as other participants also behave in accordance with the protocol.
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Pillar Capability Technical Methods Formal Methods

Local Data Management
Logging

– Logging/Monitoring Runtime
Systems, eg., ERTS [18]

– Program Testing [5, 29]

– Information Flow Analysis [4, 8, 35]
– Linear Types [45]
– Functional Verification

[7, 14,24,26,28,32,37,44,46]

Usage Policies
Local Access

Data Sharing
Permission
Management
Communica-
tion Safety – Automata Specifications [27,31,47]

– Algebraic Specifications: CSP [25],
CCS [33,34], π-calculus [41]

– System Testing [10,12,16]

– Model Checking [13, 17, 27, 31, 36, 39,
42,47]

Recipient
Compliance

Cryptography (Digital Signature) [1]

Personal Data Data Subject
Communica-
tion – User Interface Design [15,30,38] – Log Analysis [23]

– User Feedback [11]

Table 5. Technical and formal methods applicable for Levels 3 and 4.

4.3 Ensuring Originality with Digital Signatures

Digital signatures provide the means to provide a proof of origin and are the dual to encryption. This subsection
explains the general concept and how it guarantees the origin of a document [1].

We consider the following scenario. Alice has Bob’s public key Apub and their own keys Apriv and Apub . Bob has
Alice’s public key Apub and their own keys Bpriv and Bpub . Figure 3 shows what keys what participants have access
to.

For each public/private pair of keys Kpub and Kpriv , both keys reverse each other. That is, for every message m we
have Kpub(Kpriv (m)) = m and Kpriv (Kpub(m)) = m. Also, it is very hard to find the private key (public key) given
the public key (private key), ie., given Kpub (Kpriv ) it is computationally hard to find Kpriv (Kpub) such that the
above property holds.

Before we discuss how Alice and Bob can exchange signed messages, we will describe how they send encrypted messages.
We assume Alice wants to send Bob a private message m such that only Bob can read it. Alice can use Bob’s public
key Bpub to encrypt the message to Bpub(m). The only way to recover m from Bpub(m) is to apply Bob’s private key
to it, ie., Bpriv (Bpub(m)) = m. Since we know that only Bob has his private key (and that it is not easy to calculate
from Bpub), we know that only Bob can execute that operation. Hence, the message is remains private and only Alice
and Bob know m’s contents.

The case for signing is slightly different. In the case of encryption, our goal is that the recovery of the message is only
executable by the recipient. For signing, we want the signing only be possible by the sender. Now assume, Alice wants
to send Bob a message m such that Bob knows it was her that sent it. The only operation only Alice can execute is
Apriv (m). If she sends Apriv (m), he can apply her public key to it and recover the message.6 At this point, Bob has
the message m and presumably knows that Alice send it.

How can an attacker attempt to send a message m as Alice? He would need to find a message m′ such that Apub(m
′) =

m. This would essentially7 attempts to calculate the Alice’s private key which is, by definition, computationally hard.

The other possibility is that the attacker sends random messages, ie., he just sends any m′ and waits to see how Bob
reacts after encryption. But as long as we can distinguish random messages from well-formed messages, we can simply
ignore them. Notice that well-formedness requires a certain degree of domain-knowledge.

6 Everybody who has her public key can recover the message! Signing does not ensure that only the recipient can read the
message.

7 This is technically a simpler problem then finding Apriv , because finding Apriv solves the above problem for every message
m, while the above searches for a solution for a specific m. On the other hand, this exactly allow to send a m as Alice. If you
want to provide m as an input to that algorithm, you are again calculating Apriv .
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// The c o n s t r u c t o r o f LogPrf i s hidden in a module .
// The only way to c r e a t e one , i s to c a l l the l o g func t i on .
enum LogPrf {

Prf
}

fn l og_operat ion (_msg : String ) −> LogPrf {
println! ( " Log Operation " ) ;
LogPrf : : Prf

}

// The opera t ion consumes the LogPrf .
// Therefore , every opera t ion needs i t s own LogPrf and the c r e a t i o n c r e a t e s the l o g .
// I t i s t h e r e f o r e i m p o s s i b l e to execu te the opera t ion wi thou t c r e a t i n g a l o g .
fn operat i on ( _prf : LogPrf ) {

println! ( " Execute Operation " ) ;
}

fn main ( ) {
// Create LogPrf which c r e a t e s the Log .
let pr f = log_operat ion ( " F i r s t  l og  entry " . to_st r ing ( ) ) ;
// Execute Operation
operat i on ( p r f ) ;
//A second opera t ion f a i l s w i thout i t s own l o g entry .
// opera t ion ( p r f ) ;

}

Fig. 2. An example of using linear types to ensure a logging function is called.

By using this form of digital signature, we can ensure that we know who has send a specific message. We can apply
this technique to the regulatory certification. If a external reviewer certifies that a specific service acts according to
the regulation laid out in the DGA [20] and GDPR [19], it can sign a machine readable document of the fact and hand
it to the service. Upon the request, the service can provide the document and we can check with the reviewers public
key that the document is genuine. This approach also has the advantage that the reviewer does not need to provide
infrastructure to certify a service for every data exchange. It can simply publish its public key.

5 Conclusion

We present a maturity models for the different aspects of a data trust when they implement the DGA [20] and
GDPR [19]. We focus on three pillars - data management, data sharing, and personal data. Every pillar has capabilities
that must the implemented to some degree.

A proper local data management is prerequisite for any data trust. A data trust that also shares data needs to manage
additional permissions, communication with other parties, and ensure the recipient’s compliance with the regulation.
Handling personal data implies that the data trust has processes to communicate with data subjects and provides
them with an interface to execute their rights as data subjects.

The maturity of a service’s capabilities is judged across four levels of maturity relevant for data trusts. The initial level
pushes the requirements to the individual implementer or operator. The second level moves these to organizational
measures, while the third also implements technical restrictions. The fourth level introduces formal methods to validate
the technical restrictions of Level 3.

A service that has implemented every capability on the fourth level can provide proofs for most properties required
by the DGA [20] and GDPR [19]. The problem of how to validate the behavior of a data trust as a user remains, ie.,
how can a user validate that data trust that said it delete data, has in fact delete the data? A similar problem exists
between all participants in a network and remains an open problem in computer science.
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1 module communication

3 variable DTState, clientState, inboxDT, inboxClient

4 TypeInvariant ∆
= DTState ∈ {0, 1, 2}

5 ∧ clientState ∈ {0, 1, 2}

6 ∧ inboxDT ∈ {0, 1, 2}

7 ∧ inboxClient ∈ {0, 1}

9 Init ∆
= DTState = 0

10 ∧ clientState = 0

11 ∧ inboxDT = 0

12 ∧ inboxClient = 0

14 SendToDT(msg) ∆
= inboxDT = 0

15 ∧ inboxDT′ = msg

17 SendToClient(msg) ∆
= inboxClient = 0

18 ∧ inboxClient′ = msg

20 ReadFromDT(msg) ∆
= inboxDT = msg

21 ∧ inboxDT′ = 0

23 ReadFromClient(msg) ∆
= inboxClient = msg

24 ∧ inboxClient′ = 0

27 SendRequestToDT ∆
= clientState = 0

28 ∧ SendToDT(1)

29 ∧ clientState′ = 1

30 ∧ unchanged 〈inboxClient, DTState〉

32 ReadRequestFromDT ∆
= DTState = 0

33 ∧ ReadFromDT(1)

34 ∧ DTState′ = 1

35 ∧ unchanged 〈inboxClient, clientState〉

37 SendResponseToClient ∆
= DTState = 1

38 ∧ SendToClient(1)

39 ∧ DTState′ = 2

40 ∧ unchanged 〈inboxDT, clientState〉

42 ReadResponseFromClient ∆
= clientState = 1

43 ∧ ReadFromClient(1)

44 ∧ clientState′ = 2

45 ∧ unchanged 〈inboxDT, DTState〉



47 SendAckToDT ∆
= clientState = 2

48 ∧ SendToDT(2)

49 ∧ clientState′ = 0

50 ∧ unchanged 〈inboxClient, DTState〉

52 ReadAckFromDT ∆
= DTState = 2

53 ∧ ReadFromDT(2)

54 ∧ DTState′ = 0

55 ∧ unchanged 〈inboxClient, clientState〉

57 Next ∆
= SendRequestToDT

58 ∨ ReadRequestFromDT

59 ∨ SendResponseToClient

60 ∨ ReadResponseFromClient

61 ∨ SendAckToDT

62 ∨ ReadAckFromDT

64 Spec ∆
= Init ∧2[Next]〈DTState, clientState, inboxDT, inboxClient〉

66

68 theorem Spec ⇒ 2TypeInvariant

70
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